Energy Spectrum Measured by the Telescope Array Surface Detector

Student: Dmitri Ivanov

Rutgers University

Advisor: Prof. Gordon Thomson

Piscataway, NJ, April 30, 2012
OUTLINE

• Ultra High Energy Cosmic Rays (UHECR)
• Greisen-Zatsepin-Kuzmin GZK suppression
 – HiRes\(^1\)-AGASA\(^2\) contradiction
• Telescope Array (TA)
• TA Surface Detector (SD)
• TA SD Event Reconstruction
• TA SD Monte-Carlo (MC) Simulation
• Energy Spectrum Result
• Conclusions

\(^1\)HiRes: High Resolution Fly’s Eye (UHECR) experiment
\(^2\)AGASA: Akeno Giant Air Shower Array (UHECR experiment)
Cosmic Rays

- Cosmic Rays
 - First discovered by V. Hess
 - Mostly charged particles
 - Flux = steeply falling power law \(\rightarrow \) UHECR (\(E > 10^{18} \text{ eV} \)) are rare

- \(E > 10^{18} \text{ eV}, \) UHECR
 - Sources unknown
 - Produce extensive air showers in atmosphere (Auger)
 - Secondary particles reach the ground \(\rightarrow \) Sparsely spaced ground array detectors (Rossi)
 - Volcano Ranch saw a first \(10^{20} \text{ eV} \) event (Linsley).
Extensive Air Showers

- **Hadronic core**
 - Baryons, π, K

- **Electromagnetic component**
 - Started by $\pi^0 \rightarrow 2\gamma$ decays
 - Pair production
 - Bremsstrahlung
 - Ionization & Excitation losses
 - Produce Fluorescence and Cherenkov light
 - Compton scattering

- **Muon component**
 - Due to charged π and K decays
 - Muons are long-lived, penetrating, and reach the ground level
Extensive Air Showers (Contd.)

- Fluorescence detectors register fluorescence light due to the excitation of N\textsubscript{2} molecules by the electromagnetic component.
- Ground Arrays register secondary particles from electromagnetic and muonic component.
GZK Suppression

- A well known fact from accelerator experiments of ~0.5 GeV gamma + stationary proton:

 \[
 \gamma + p \rightarrow \Delta^+ \rightarrow n + \pi^+
 \]

 \[
 \gamma + p \rightarrow \Delta^+ \rightarrow p + \pi^0
 \]

- Cosmic Microwave Background
 - 2.7 K ~2 x 10^{-4}eV
 - 10^{20}eV protons should lose energy (efficiently) due to this photopion production → strong suppression in cosmic ray flux near 10^{20}eV (Greisen, Zatsepin, Kuzmin)
GZK Suppression (Contd.)

• But early ground array experiments reported seeing \(E \geq 10^{20} \text{ eV} \) events
 – Volcano Ranch, SUGAR, Yakutsk

• Fly’s Eye reported \(3 \times 10^{20} \text{eV} \)
 – Largest particle energy ever measured
 – Used Air-fluorescence technique
 • pioneered by University of Utah experiment

• The experiments were too small to conclusively rule out the GZK suppression
 – few tens of square kilometers
 – small \((\text{Area} \times \text{Solid Angle} \times \text{Observation Time})\) factors for measuring flux at \(E > 10^{19} \text{ eV} \)
AGASA

- Akeno, Japan
- 1st experiment large enough to measure flux above 10^{19} eV
- Area ~ 100 km2
- ~1 km spacing
- 111 plastic scintillation counters
- 13 years of operation, 1991-2004
- ~120 km2 sr aperture above 10^{19} eV
AGASA: No GZK effect

- 11 “super-GZK” events in AGASA data
- Flux limited by the rate at which sources can produce UHECR?
- GZK suppression ??

Dotted line = spectrum by uniform sources, propagated through cosmic microwave background
HiRes

- Dugway Proving Grounds, UT
- Two-site fluorescence detector
 - Spherical mirrors, 4.2m²
 - 256 photomultiplier tubes / mirror
 - Each tube ~1 degree cone of the sky
- HiRes1
 - 1 ring of 21 mirrors
 - 3 – 17 degree elevations
- HiRes2:
 - 12.6 km South-West of HiRes1.
 - 2 rings x 42 mirrors
 - 3 – 31 degree elevations
- 9 years of operation 1997 – 2006
 - 10% duty cycle
- Aperture ~7.5x10³ km² sr at 10²⁰ eV
HiRes: GZK Cutoff Exists

- Fluorescence detector
 - First to observe GZK effect
 - Chance probability > 5 σ
HiRes vs AGASA

• Combine HiRes and AGASA experiments
 – AGASA-like array of scintillation counters
 – HiRes – like fluorescence detectors

• **Telescope Array** experiment
 – Deployed in 2007
 – Measure UHECR anisotropy, mass composition
 – Measure UHECR energy spectrum:
 • Using fluorescence detectors only
 • Using surface detectors only
 – large statistics above 10^{19} eV
 – *This work*
 • Using surface and fluorescence detectors (hybrid)
The Telescope Array (TA) Collaboration

T. Abu-Zayyada, R. Aidab, M. Allena, R. Andersona, R. Azumac, E. Barcikowskia, J.W. Belza, D.R. Bergmana, S.A. Blakea, R. Cadya, B.G. Cheond, J. Chibam, M. Chikawal, E.J. Chog, W.R. Choo, H. Fujiih, T. Fujii, T. Fukudac, M. Fukushima1,t, D. Gorbunovh, W. Hanlona, K. Hayashii, Y. Hayashii, N. Hayashidaa, K. Hibinoh, K. Hiyamaa, K. Hondab, T. Igdaric, D. Ikedaa, K. Ikutab, N. Inouem, T. Ishiib, R. Ishimoric, D. Ivanova,p, S. Iwamotob, C.C.H. Juia, K. Kadotaa, F. Kakimotoc, O. Kalashnikovk, T. Kanbeb, K. Kasaharap, H. Kawaid, S. Kawakamiq, E. Kidom, H.B. Kimb, T. Kimurac, K. Kitamotoi, K. Kobayashib, Y. Kobayashic, Y. Kondok, K. Kuramotot, T. Matsudaa, T. Matsuurah, T. Matsuyamac, I. Myersa, J.N. Matthewsa, K. Martensi, T. Nakamurac, S.W. Namb, T. Nonakas, T. Okudaa, A. Oshimaa, S. Ozawap, I.H. Parke, M.S. Pshirkovv, D. Rodrigueza, S.Y. Rohh, G. Rubtsovk, D. Ryuf, H. Sagawaa, N. Sakuraia, A.L. Sampsona, L.M. Scottn, P.D. Shaha, F. Shibatab, T. Shibataa, H. Shimodairai, B.K. Shind, J.I. Shing, T. Shirahamam, J.D. Smitha, P. Sokolskya, T.J. Sonleya, R.W. Springera, B.T. Stokesa, S.R. Strattona,n, T.A. Stromana, S. Suzukib, Y. Takahashii, M. Takedaa, A. Taketaw, M. Takitaa, K. Tanakab, M. Tanakab, S.B. Thomasa, G.B. Thomsona, P. Tinyakovv, I. Tkachevb, H. Tokunoc, T. Tomidab, S. Troitskyk, Y. Tsunesadac, K. Tsutsumib, Y. Tsuyuguchib, Y. Uchihorib, S. Udoh, H. Ukab, G. Vasiloffb, Y. Wadam, T. Wonga, M. Wooda, Y. Yamakawah, H. Yamadaa, K. Yamazakii, J. Yanga, S. Yoshidaa, H. Yoshiia, R. Zollingera, Z. Zundela

aUniversity of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah, USA, bUniversity of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi, Japan, cTokyo Institute of Technology, Meguro, Tokyo, Japan, dHanyang University, Seongdong-gu, Seoul, Korea, eTokyo University of Science, Noda, Chiba, Japan, fKinki University, Higashi Osaka, Osaka, Japan, gYonsei University, Seodaemun-gu, Seoul, Korea, hInstitute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan, iOsaka City University, Osaka, Osaka, Japan, jInstitute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan, kInstitute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia, lKanagawa University, Yokohama, Kanagawa, Japan, mSaitama University, Saitama, Saitama, Japan, nRutgers University, Piscataway, USA, oTokyo City University, Setagaya-ku, Tokyo, Japan, pWaseda University, Advanced Research Institute for Science and Engineering, Shinjuku-ku, Tokyo, Japan, qChiba University, Chiba, Chiba, Japan, rChungnam National University, Yuseong-gu, Daejeon, Korea, sEwha Womans University, Seodaemun-gu, Seoul, Korea, tUniversity of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba, Japan, uKochi University, Kochi, Kochi, Japan, vUniversity Libre de Bruxelles, Brussels, Belgium, wEarthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan, xChiba University, Hiroshima, Hiroshima, Japan, yNational Institute of Radiological Science, Chiba, Japan, zEhime University, Matsuyama, Ehime, Japan

• 140 collaborators, 26 schools, 5 countries
• US, Japan, Korea, Russia, Belgium
• Many former HiRes & AGASA members
TA SD Spectrum Group

• Prof. Gordon Thomson - Faculty Supervisor
 – Dr. Benjamin Stokes - Post Doc
 • Detailed CORSIKA Monte-Carlo simulation of the TA SD
 • Circumvent problems due to approximations in CORSIKA
 • Solve computational performance issues
 • Simulate UHECR as they exist in nature
 • Include TA SD details: response, electronics, and calibration
 – Dmitri Ivanov - Graduate Student
 • Parsing and handling raw data, calibration
 • GEANT- 4 simulation of the detector response
 • Event reconstruction and quality cuts
 • Monte-Carlo validation (comparison with data)
 • Energy spectrum calculation and interpretation
Telescope Array
Hybrid detector
Millard County, UT
39.3° N, 112.9° W,
Alt. 1400m
~880g/cm²

507 Surface Detector (SD) counters, 1.2km apart, cover 680km²

3 Communication Towers (CT): BR, LR, SK
3 Fluorescence Detectors (FD): BR, LR, MD
TA Surface Detector (TA SD)

- Powered by solar cells; radio readout.
- Calibration using atmospheric muons.
- Energy deposition by secondary cosmic ray particles measured in VEM units (Vertical Equivalent Muon)
 - Energy deposited by a vertical minimum-ionizing muon
Exterior Parts

1. Wireless antenna
2. GPS receiver
3. Battery & electronics box
4. Solar panel
5. Iron roof
6. Supporting metal frame
Sensitive Parts

1. Stainless steel box
2. Two layers of 1.5m x 2m plastic scintillators, 1.2cm thick each
3. Wavelength Shifting Fiber (WLS)
4. Photomultiplier Tube (PMT)
 - Operate at ~1000 V
 - Gain ~ 2×10^6
 - One PMT for each (upper, lower) scintillator layer
5. Tyvek sheet
6. WLS (cross-sectional view)
7. WLS Grooves
8. Separator plate
VEM Definition

- **GEANT4 simulation:**
 - Minimum ionizing energy occurs at vertical muon (kinetic) energy of ~300 MeV
 - Most probable value of dE/dX for a vertical 300 MeV muon is 2.05 MeV

- **1 VEM = 2.05 MeV**
- Varies slowly with increasing (kinetic) energy of muon
Electronics

- Energy deposition in each counter is read out by two PMTs
 - upper, lower scintillator layers
- PMT output recorded by 12 bit 50 MHz Flash-Analog-to-Digital-Converter (FADC)
- Waveforms (signal vs time) reported to the communication towers

Typical waveform reported by a counter
(signal from an extensive air shower)
Trigger and Data Acquisition

- Trigger issued by **Communication Towers (CT)** when:
 - 3 adjacent counters
 - ≥ 150 FADC counts each
 - Upper/lower layer coincidence
 - Within 8µS

- Data acquisition ↔ request waveforms from counters:
 - ≥ 15 FADC counts each
 - Upper/lower layer coincidence
 - ± 32 µS of the trigger time

- Hybrid Trigger
 - FDs can send commands that prompt data acquisition
 - just like normal CT trigger

Acceptable trigger patterns (up to rotations by 90°)
VEM Calibration

- Convert signal from [FADC] to [VEM]
- **Minimum Ionizing Particle (MIP)** pulses
 - ~700 Hz at a counter
 - Histogrammed over 10 minute periods by each counter
- Peak P_{MIP} of the histogram related to FADC counts per VEM (separately for each layer):
 - $P_{\text{MIP}} \approx FADC_{\text{VEM}} \sec(30^\circ)$
 - 30° is the effective zenith angle of particles
 - Detailed simulations of atmospheric particles give answers within 1.5%
VEM Calibration (Contd.)

• $FADC_{VEM}$ (color) plotted versus counter X, Y position
 – a randomly chosen 10 min monitoring cycle
• Typically, $FADC_{VEM} \approx 40$ FADC counts VEM$^{-1}$
Event Reconstruction

- Circle = a counter
- Color = counter time
- Circle size proportional to the log of the counter pulse height (in VEM)
- Star = shower impact position
- Arrow = projection of the event direction on the ground (the “u-axis”)
- Geometry reconstructed from the counter time
- Energy estimated from the lateral distribution of counter signals

After pattern recognition
 - Pick out counters that are part of the event (remove random muons)
Geometry Reconstruction

- Event direction is found by minimizing:

\[\chi^2 = \sum_{i=1}^{nSDs} \left(\frac{(t_i - T_0 - T_{\text{Plane}} - T_D)^2}{T_S^2} + \frac{(\vec{R} - \vec{R}_{\text{COG}})^2}{(180\text{m})^2} \right) \]

- 6 parameters in the final fit:
 - Zenith and azimuthal angles
 - Core X, Core Y, Core time
 - Curvature of the front

- \(T_0 \) - Time of the core hitting ground
- \(T_{\text{Plane}} \) - Time of the shower front plane
- \(T_D \) - Time delay (next slide)
- \(T_S \) - Fluctuation of the time delay
- \(\vec{R} \) - Fitted (2D) core position
- \(\vec{R}_{\text{COG}} \) - 2D core position found from the center of gravity of charge
Time Structure of the Shower Front

\[T_D = a \left(1 - \frac{l}{12 \times 10^3 \text{m}}\right)^{1.05} \left(1.0 + \frac{s}{30 \text{m}}\right)^{1.35} \rho^{-0.5} \]

\[T_S = (1.56 \times 10^{-3} \mu\text{S}) \left(1.0 - \frac{l}{12 \times 10^3 \text{m}}\right)^{1.05} \left(1.0 + \frac{s}{30 \text{m}}\right)^{1.5} \rho^{-0.3} \]

- \(T_D \) = Counter delay time due to the shower front curvature
- \(T_S \) = Fluctuation of the shower front time at the counter
- \(a \) = Curvature parameter
- \(l \) = Counter distance from the core along the (3D) shower axis
- \(s \) = Counter perpendicular distance from the shower axis
- \(\rho \) = Charge (pulse height) density at the counter, VEM m\(^{-2}\)

- Started with AGASA-Linsley formula
- Empirically adjusted using TA SD data only
- Tested that it works for Monte-Carlo also
Time Fit

- Counter time plotted vs distance along the u-axis (points with error bars = data)
- Solid line = fit expectation time for counters on the u-axis
- Dashed line = fit expectation for counters 1km off the u-axis
- Dotted line = fit expectation for counters 2km off the u-axis

(A 1D illustration of a multi-dimensional fit)
Test the time fit formulas derived from the TA SD data.

Each entry = counter, plots are **over all counters and over all events**.

Normalized residual = \((\text{counter time} - \text{fit time}) / T_S\)

Plotted versus (perpendicular) distance from the shower axis.

Data and Monte-Carlo fit in the same way.
Lateral Distribution Fit

- Counter signal versus perpendicular (lateral) distance from the shower axis
- Fit to the AGASA Lateral Distribution Function (LDF)
- Determine the Signal Size at 800m (S800) from the shower axis

AGASA LDF:
\[\rho = A \left(\frac{s}{91.6\text{m}} \right)^{-1.2} \left(1 + \frac{s}{91.6\text{m}} \right)^{-(\eta(\theta)-1.2)} \left(1 + \left[\frac{s}{1000\text{m}} \right]^2 \right)^{-0.6} \]
\[\eta(\theta) = 3.97 - 1.79 \left[\sec(\theta) - 1 \right] \]

\[\sigma_\rho = \sqrt{0.56 \rho + 6.3 \times 10^{-3} \rho^2} \]

uncertainty on charge density \(\rho \) determined empirically from the TA SD data

3 fit parameters: A, Core X, and Core Y
Lateral Distribution Fit Residuals

- Each entry = counter, plots are over all counters and over all events
- Normalized residual = \(\frac{\text{counter } \rho - \text{fit } \rho}{\sigma_{\rho}}\)
- Plotted versus (perpendicular) distance from the shower axis
- Data and Monte-Carlo fit to the AGASA LDF in the same way
Energy Determination, Step 1/2

- A look-up table made from the Monte-Carlo
- Event energy \(E_{\text{TBL}} \) is a function of reconstructed S800 and sec(θ)
- Energy reconstruction \(\leftrightarrow \) interpolation between S800 vs sec(θ) contours of constant values of \(E_{\text{TBL}} \)

\[
Y = \log_{10}[S800 \text{ (VEM m}^{-2}\text{)]}
\]

\[
X = \sec(\theta)
\]

\[
Z = \log_{10}(E/\text{eV})
\]

- \(\log_{10}[S800 \text{ (VEM m}^{-2}\text{)]} \)
- \(10^{17.8} \text{ eV} \)
- \(10^{20.5} \text{ eV} \)

\(E_{\text{TBL}} = f[S800, \sec(\theta)] \)
Energy Determination, Step 2/2

- Energy scale locked to the TA FD to reduce the systematic due to the model
- Used well-reconstructed events seen in common by the TA SD and TA FD:
 - $\text{TA SD} \cap [\text{BR U LR U MD}]$
 - $E_{\text{FINAL}} = \frac{E_{\text{TBL}}}{(1.27 \pm 0.02)}$
- Energy scale systematic uncertainty is now same as that of the TA FD, which is 21%
- TOP figure: E_{FINAL} vs E_{FD} scatter plot
- BOTTOM figure: histogram of $E_{\text{FINAL}} / E_{\text{FD}}$ ratio
List of Quality Cuts

• Remove events reconstructing with bad resolution, otherwise may “miss” important features in the energy spectrum.

• Quality cuts:
 1. $N_{SD} \geq 5$: minimum number of counter / event
 2. $\theta < 45^\circ$: maximum zenith angle
 3. $D_{\text{Border}} \geq 1200\text{m}$: minimum core distance from the edge of the array
 4. $\chi^2 / \text{d.o.f.} < 4$: maximum χ^2 per degree of freedom of time and LDF fits.
 5. $\sigma_G < 5^\circ$: maximum pointing direction uncertainty (from the time fit)
 6. $\sigma_{S800} / S800 < 0.25$: maximum fractional uncertainty of S800 (from the LDF fit)

• Next page shows the effects on the energy resolution of incrementally applying cuts 1 through 6
Effect of Quality Cuts

- Used a detailed Monte-Carlo to develop quality cuts

- No cuts
- 1
- 1,2
- 1,2,3
- 1-4
- 1-5

Reconstructed Energy vs True (Generated) Energy

Final with all cuts
Angular Resolution

- Determined from the Monte-Carlo
- Cumulative distribution \((f = \text{fraction of events})\) of the opening angle between the true and reconstructed event directions \((\delta)\)
- Quoted 68% confidence limits:
 - values of \(\delta\) that contain 68% of events \((f = 68\%)\)

\[
\begin{align*}
\text{2.4°} & \quad 10^{18} - 10^{18.5} \text{ eV} \\
\text{2.1°} & \quad 10^{18.5} - 10^{19} \text{ eV} \\
\text{1.4°} & \quad 10^{19} - 10^{20.5} \text{ eV}
\end{align*}
\]
Energy Resolution

- Determined from the Monte-Carlo
- Histogram (natural logarithm) of reconstructed over generated (true) energies
- Use the root-mean-square (RMS) of the distribution to determine the energy resolution in percent of the true energy

$10^{18} - 10^{18.5} \text{ eV}$

$10^{18.5} - 10^{19.0} \text{ eV}$

$10^{19.0} - 10^{20.5} \text{ eV}$
Reconstruction Summary

• Two fits:
 – Time fit \rightarrow event geometry
 – Lateral distribution fit \rightarrow S800 (Signal 800m from shower axis)
 – Fitting procedure and formulas adjusted using data only \rightarrow avoid model dependences

• Energy determination:
 – Reconstructed (S800, $\text{sec} \, \theta$) + Monte-Carlo \rightarrow initial estimate of energy
 – FD energy scale(1/1.27 rescaling of look-up table values) \rightarrow reduce model dependence
 – Quality cuts \rightarrow improve resolution
TA SD Monte-Carlo Approach

• Simulate UHECR as they exist in nature
 1. Primary particle type
 – Proton, mass composition measurement by HiRes
 2. Energy spectrum
 – previously measured by HiRes
 3. Angular distribution
 – Isotropic in local sky
 4. Shower impact parameter
 – Distributed randomly in a large circular area surrounding the Telescope Array experiment
Generated Energy Distribution

- Generated MC energy histogram displayed using format:
 - \(0.1 \log_{10}(E/eV) \) bins
 - Each bin content
 - divided by the (linear) bin size in energy
 - Multiplied by \(E^3 \) (energy of the bin center)
 - Normalized so that the first bin is unity

- Solid line = HiRes spectrum, parameterized by a broken power law function
Generated Angular Distribution

- **Zenith Angle**
 - $\sin(\theta) \cos(\theta)$
 - Distribution: θ_{GEN} [Degree]

- **Azimuthal Angle**
 - Flat distribution
 - Distribution: ϕ_{GEN} [Degree]
Generated Impact Position

- Random point inside a circle
 - radius = 25 km
 - centered at the Central Laser Facility (CLF)
 - Encircles entire experiment
TA SD Monte-Carlo Procedures

• Simulate Extensive Air Showers
 – Use CORSIKA:
 • QGSJET-II high energy hadronic model
 • EGS4 electromagnetic model
 • FLUKA low energy hadronic model
 – Include atmospheric muon flux
 – Simulate detector response to secondary particles by GEANT4
 • Including γ, e^{\pm}, μ^{\pm}, π^{\pm}, p, n
 – Use real-time detector calibration and life-time
 – Simulate the trigger and electronics
 – Write events in the same format as data, reconstruct with the same programs, apply same quality cuts

• Validate the Monte-Carlo by comparing the distributions of reconstructed variables with data
DATA / MC Comparisons

Points with error bars = DATA histograms
Solid line = MC histograms normalized to the data histograms by area

1 to 2 % agreement between the DATA and MC in most variables
Next Step: Aperture

- Calculated from the MC
- Including:
 - Effects of quality cuts
 - Effects of energy resolution

\[\alpha_i = A_{\text{GEN}} \Omega_{\text{GEN}} \left(\frac{N_{\text{REC}}^{\text{MC}}}{N_{\text{GEN}}^{\text{MC}}} \right)_i \]

- MC generation aperture, 4626 km² sr
- Number of MC events reconstructing in the \(i \)th energy bin
- Number of MC events generated in the \(i \)th energy bin

(Efficiency plateaus at \(E \sim 10^{19} \) eV)
Measured UHECR Flux

- 2008/05/11 – 2011/04/25 (T ~ 3 yr)
- Systematic uncertainties
 - 21% on energy scale (controlled by the FD) → ~35% on J
 - 2% due to the acceptance (14% below $10^{18.2}$ eV)
 - 2% due to the resolution unfolding

\[
J_i = \frac{(N_{\text{DATA}}^\text{REC})_i}{(N_{\text{MC}}^\text{REC})_i} \frac{\Delta E_i}{A_{\text{GEN}} \Omega_{\text{GEN}} T}
\]
Comparison with HiRes

- Different detection techniques, excellent agreement
- Both experiments clearly see the ankle feature near $10^{18.7}$ eV
- TA SD confirms the existence of the break at $10^{19.7}$ eV
Comparison with AGASA

- Clear disagreement
- (RIGHT) Accounting for AGASA – TA energy scale difference
 - Doesn’t explain discrepancy above $10^{19.7}$ eV
TA SD Flux Fit

• Differential flux is described by the **Broken Power Law** formula (*BPL*):

\[J(E) = K \times \begin{cases}
E^k, & E < E_{\text{ANK}} \\
E_{\text{ANK}}^{k-l} E^l, & E_{\text{ANK}} \leq E < E_{\text{GZK}} \\
E_{\text{ANK}}^{k-l} E_{\text{GZK}}^{l-m} E^m, & E \geq E_{\text{GZK}}
\end{cases} \]

• 6 Fit parameters:
 – \(K \) = normalization factor
 – \(k, l, m \) (negative) spectral indices
 – \(E_{\text{ANK}} \) – 1\(^{\text{st}}\) break point
 – \(E_{\text{GZK}} \) – 2\(^{\text{nd}}\) break point
TA SD Flux Fit (Contd.)

\[
E^3 J / 10^{24} \text{ m}^2 \text{s}^{-1} \text{sr}^{-1} \text{eV}^2
\]

\[
\log_{10}(E/\text{eV})
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>(2.25 \pm 0.06 \times 10^{-30} \text{ eV}^{-1} \text{m}^{-2} \text{s}^{-1} \text{sr}^{-1})</td>
</tr>
<tr>
<td>(E_{\text{ANK}})</td>
<td>(10^{18.70 \pm 0.03} \text{ eV})</td>
</tr>
<tr>
<td>(E_{\text{GZK}})</td>
<td>(10^{19.68 \pm 0.09} \text{ cV})</td>
</tr>
<tr>
<td>(k)</td>
<td>(-3.27 \pm 0.03)</td>
</tr>
<tr>
<td>(l)</td>
<td>(-2.68 \pm 0.04)</td>
</tr>
<tr>
<td>(m)</td>
<td>(-4.2 \pm 0.7)</td>
</tr>
</tbody>
</table>
Measured GZK cutoff

- Quantify position of the break by $E_{1/2}$ (Berezinsky et. al)
 - Integral flux becomes $\frac{1}{2}$ of the flux obtained by linear extrapolation beyond the GZK break
- TA SD measures
 - $\log_{10}(E_{1/2}) = 19.69 \pm 0.10$
- Berezinsky calculates for proton primaries propagating in cosmic microwave background
 - $\log_{10}(E_{1/2}^{\text{THEORY}}) = 19.72$
- TA SD measurement fits the extra-galactic proton model
Significance of the GZK cutoff

• Assume no GZK cutoff and extend the broken power law fit beyond the break
• Apply this extended flux formula to the actual TA SD exposure, find the number of expected events and compare it to the number of events observed in $\log_{10} E$ bins after $10^{19.7} \text{eV}$ bin:
 - $N_{\text{EXPECT}} = 54.9$
 - $N_{\text{OBSERVE}} = 28$

$$\text{PROB} = \sum_{i=0}^{28} \text{Poisson}(\mu = 54.9; i) \approx 4.75 \times 10^{-5}$$

(3.9σ)
Recent - UHECR 2012

- Fits to extragalactic proton model made by V. Berezinsky
 - UHECR-2012 Conference, Feb. 2012, CERN
- Both TA and HiRes consistent with model of extragalactic proton propagation in Cosmic Microwave Background
Conclusions

• Telescope Array combined measurement techniques used by the AGASA and HiRes experiments
 – Fit formulas derived starting with AGASA functions, tuned to fit the TA SD data
 – DATA / MC analysis used, just like in HiRes experiment (excellent control of systematic uncertainties)
 – Energy scale locked to the FD to avoid large systematic uncertainties due to the hadronic models
• Existence of the GZK cutoff is verified, for the first time, by an array of scintillation counters
• Measurement suggests extra-galactic proton interpretation (Berezinsky et. al.)
Fin
Comparison with Pierre Auger Observatory

- ~20% energy scale difference
 - Comes from the FD
- Same power laws (within fitting errors)
- Position of the second break (E_{GZK}) different
- Most recent Auger result (ICRC-2011)
 - Auger ~27% lower
 - After taking energy scale into account
Compare with other CR experiments

(T.K Gaisser, T. Stanev, 2009)